Scaling clustering algorithms with
Bregman distances!

Jacob Kogan
kogan@umbc.edu
Department of Mathematics and Statistics
UMBC, Baltimore, MD 21250
and
Marc Teboulle
teboulle@post.tau.ac.il
School of Mathematical Sciences
Tel-Aviv University

Tel-Aviv, Israel

Abstract

Clustering algorithms often require to keep the
entire dataset in the computer memory. When
the dataset is large and does not fit into avail-
able memory one has to “squash” the dataset
to make applications of k—means like algorithms
possible. The Balanced Iterative Reducing and
Clustering algorithm (BIRCH) is a clustering al-
gorithm designed to operate under the assump-
tion “the amount of memory available is limited,
whereas the dataset can be arbitrary large” [22].
The algorithm does the “squashing”, or gener-
ates “a compact dataset summary” minimizing
I/O cost involved. An application of quadratic
batch k—means to the BIRCH generated “sum-
mary” is proposed in [4]. The present note com-
bines BIRCH and k—means clustering equipped
with Bregman distances. We report preliminary
numerical experiments on two small datasets, so

that the results of clustering with and without

1Research supported in part by the United States—Israel
Binational Science Foundation (BSF), Grant No. 2010

BIRCH can be compared. The suggested BIRCH
+ k—means clustering scheme combines batch and
incremental iterations, allows a choice of a variety
of distance like functions, and may be useful for
clustering large data collections, like, for example,

the Enron dataset.

1. Introduction

The concept of divergence measures, also called
distance like functions, which are derived from
given convex functions, have been introduced by
Bregman [5] and Csiszar [11]. These distance
like functions have been extended and successfully
used in the context of optimization theory and al-
gorithms in many studies (see e.g. [6], [7] for Breg-
man distances and [17], [16], [18] for Csiszar based
divergences, and references therein). In a number
of recent publications divergence measures have
also been applied and shown to be useful in ma-
chine learning problems (for instance, [15], [14],
[9], [10], [21]) and in clustering (for example, [12],
13], [1))-

In this paper we extend the Bradley—Fayyad—
Reina [4] idea of applying the classical quadratic
batch k—means algorithm to clusters (rather than
vectors) generated by BIRCH, by replacing the
quadratic Euclidean distance with a Bregman di-
vergence. In addition we augment batch k—means
by incremental iterations (see [19]), thus improv-
ing final partitions generated by the algorithm.
Numerical experiments reported in the paper are
performed on a sparse data typical for IR appli-
cations. We analyze sparsity of partitions gen-
erated by BIRCH, the number of iterations per-
formed and the quality of partitions generated by
k—means with and without BIRCH.

2. Setting

,an}t C R a
prescribed subset C of R™ and a “distance” func-
tion d(x,a) define a centroid ¢ = ¢ (A) of the set

For a set of vectors A = {aj,...

A as a solution of the minimization problem

c:argmin{z d(x,a), x EC}.

acA

(2.1)

The quality of the set A is denoted by @ (A) and
is defined by

QA = i d(c,a), wherec=c(A) (2.2
i=1
(we set Q(0) = O for convenience). Let II =

{m1,..., 7} be a partition of A, i.e.

Ui
i

=A, andmﬂﬁj:@ifi#j.

We abuse notations and define the quality of the
partition II by

QU =Q(m)+...+Q(m). (2.3)
We aim to find a partition II™» =
{mimin Wit} that minimizes the value of

the objective function). The problem is known
to be NP-hard, and we are looking for algorithms

“reasonable” solutions.

that generate
It is easy to see that centroids and partitions

are associated as follows:

, g} of the set

A one can define the corresponding centroids
{C (7‘(’1) goen ,c(7rk)} by:

1. Given a partition IT = {mq,...

c (m;)=arg min{ Z d(x,a), x € C} . (2.4)

acm;

2. For a set of k “centroids” {cy,...,c} one can

define a partition IT = {my,...,m} of the set
A by:

__Jara€e A, d(c;,a) <d(c,a)
m_{ foreach I =1,...,k (2:5)

(we break ties arbitrarily). Note that, in gen-

eral, ¢ (m;) # ¢;.

The batch k—means algorithm is a procedure that
iterates between the two steps described above to
generate a partition IT' from a partition II.

Note that when the dataset A does not fit into
available computer memory evaluation of (2.5)
becomes problematic. A possible solution to
this problem for the particular choice d(x,a) =
Let

If for

|x — al|? is suggested in [22] as follows:
I = {7‘{'1,...
i=1,...,M

,ma} be a partition of A.

1
1. b; =c¢(m) = — Z a the centroid of 7;,

t acm;

2. m; = m(b;) = |m;| the size of 7,
3. ¢; = Q(m;) the quality of =;,

then

p p
Q(ﬂ-zl U7T2p = Zqzj +Zmij||c_bij||2>
(2.6)

where
+ miP bzp

+ my,

o milbil + ...
M + ...
Formula (2.6) paves the way to approach the clus-

tering of A along the two lines:

1. Given a positive real constant R (that con-
trols the “spread” of a cluster), an integer L
(that controls the size of a cluster), p already

p triplets

available clusters my,...m, (i.e.

(m;,¢;,b;)), and a vector a € R™ one can
compute @ (m; U{a}), i = 1,... If for

some index 1

) D-

Q(mU{a}) < Rand m; +1 < L,

then a is assigned to m;, and the triplet
(mi, ¢i, b;) is updated. Otherwise {a} be-
comes a new cluster mp41 (this is the basic
BIRCH construction).

2. Once a partition II = {m,..., 7} of A
is available one can cluster the set B =
{b1,...,bar}. Note that the M cluster parti-
tion {m1,...,ma} of A associates each subset
78 C B with a subset 7 C A through

= U ;.
bjEﬂ'B
a k

, 5} of the set B can be associated
T

Hence cluster partition IIp =

{nB,...
with a k cluster partition II4 = {7, ...
of the set A through

= mi=1,...,k (2.7)
B

b;en;
One can, therefore, apply quadratic k—means
to a smaller dataset B to generate a partition
of the dataset A (this approach is suggested

in [4]).

In this paper we exploit a key result reported in [1]
along with the tools developed in [19] and extend
the above approaches to clustering with Bregman

distances.

3. Bregman distance

We start with a brief introduction of Bregman di-

vergences (for detailed account and discussion see

e.g. [19]). Let ¢ : R® — R" U {400} be a proper
strictly convex function which is assumed contin-
uously differentiable on the interior of its effective
domain int dom ¢ = S, assumed to be nonempty.
The Bregman distance (also called “Bregman di-

vergence”) Dy, : clS x S — [0, 4+00) is defined by

Dy (x,y) = P(x) —(y) — (V(y),x —y), (3.1)

where V1 is the gradient of ¢, and (-,) stands for

the inner product in R". This function measures

Bregman distance

5F
4l w(x)
D, (xy)
3
o
wiy)
1+
0 [y X
-1 I
-1 0 1 2 3

Figure 1: Bregman divergence

the convexity of 1, i.e. Dy(x,y) > 0 if and only
if the gradient inequality for ¢ holds, i.e., if and
only if 1) is convex, see Figure 1.

Two examples of well known Bregman based
distance like functions are given in Table 1.
Distance like functions are not necessarily sym-
metric (hence the “distance like” attribute). This
lack of symmetry allows for considering Bregman
distances with a change in the order of the vari-

ables in Dy, i.e.,

Dy(x,y) = () — $(x) — (Veh(x),y — %) (3.2)

Y | [P | D] logx[s] — x[j]
j=1
Doty | Iyl | 3o xlltog 2]
oyl

Table 1: kernels and divergences

(compare with (3.1)). Then, for example, by using
the kernel

n

> x[j]log x[j] — x[j]} , (3.3)

=1

()= [+

with v > 0, u > 0 we obtain

y) = Dy(y,x) =

Dy, Sy = x|

n

w3 [vios 35+l -otil] 0
(numerical experiments reported in this paper are
conducted with this distance like function with
various values for v and p).

Note that by changing the order of the variables,
the convexity of x — Ep (x,y) is not anymore nec-
essarily warranted.? Despite this lack of convexity
in general, a surprising and key result for centroids

computation is reported in [1]:

Theorem 3.1 (Banerjee et al.)

m
¥z = al+'7'r;+am, then Y Dylas,z) <
m =1
ZDTl)(aiax)'
i=1

The result shows that the solution to the gener-

ally nonconvex optimization problem (2.4) with

*However, note that for the proposed example (3.4) the
convexity in the x argument is preserved. In fact, for this
example, Dy is jointly convex in both variables, see [16].

the distance like function d(x,a) = Dy(x,a) =
Dy (a,x) is always given by the arithmetic mean.
This result paves the way to the development
of k—means clustering with such Bregman dis-
tances. A generalization of (2.6) useful for extend-
ing BIRCH type clustering to datasets equipped

with Bregman distances is reported in [19]:

Theorem 3.2 (Teboulle et al.)
If A =mUmU...Um, with m; =
i=1,...k;

T, ¢i = ¢ (ms),

mg

m
c:c(.A):#cl—l—...—i—ﬁck,

where m = my+...+myg, and Il = {7 7o,..., 7L},

then
Q) =

k
= 3 Q (mi) +mi [P(ei)— (c)].(3.5)
i=1

4. Clustering procedure

The proposed clustering procedure consists of the

following steps:

1. Apply BIRCH type procedure to the dataset
A= {al, Cey
set B = {by,...

with scalars ¢;, m;, 1 =1,...,

an} C R™ to generate a vector
,by} C R", M < m along
M.

2. Apply PDDP (see [3]) to B to generate the
7B} of the set

B to be used later by k—means clustering.

initial partition Iz = {7%,...,

3. Apply batch k—means followed by incremen-
tal k—means (see [19] for details) to the initial
partition Iz = {7P,..., 7P} (in the sequel we

refer to this procedure simply as k—means).

In what follows we provide a brief description of
the first and the last steps of the procedure (appli-
cation of PDDP to the set B is straightforward).

4.1. BIRCH type procedure

Given a real constant R > 0 and an integer L > 0
we would like to build a partition IT of A so that

II= {7'('1,... aﬂ-M}a Q(Trl) < R’ |7TZ| <L (41)

for each i+ = 1,..., M. The procedure starts by
picking an arbitrary vector a € A and building a
one cluster singleton partition IT = {7 } with m; =
{a}. If a partition IT = {m,...,mp} is already
available anpd there is a vector a € A that does not

belong to U 7;, then the partition II is updated:
i=1

1. Identify an index 1 <4 < p so that

Q(ﬂ'i U {a}) < R and |71'z‘ +1< L. (4.2)

Assign a to m; and update b;, ¢; and m;.

2. If (4.2) fails for each 1 < ¢ < p a new
singleton cluster m,1; = {a} is formed,
and the updated partition becomes II =

{1, . Tp, Tpt1}-

Due to Theorem 3.2 one has

Q(m U{a}) = ¢; + mid(c,b;) +d(c,a), (4.3)
where
m; 1
— . ; 4.4
c mi+1b1+m,-+1a (4.4)

Hence, to check (4.2) one needs an access to b,
gi, m;, and a (the vectors contained in 7; are not
needed). Furthermore (4.3) provides an update
for ¢;, and (4.4) updates b;.

4.2. k—means

Consider a k cluster partition Iz = {#%,... ,7'(']1:}
of the set B and the induced k cluster partition
My = {n{,..., 7'} of the set A (see (2.7)). Con-

sider 7P with ¢ (Wf) and the corresponding clus-
ter mf* = {m,...,mp}. In what follows we shall

denote the number of vectors in cluster # € II
with centroid b by m(b). Due to (3.5)

> m(b)d (c (F),b).
bwa

Q (xf) =:§Q<m) ¥

B

Repetition of this argument for other clusters =;

and summing the corresponding expressions leads

to
k M
> Q) = Yom)
=1 =1
k
+ 3 Y mb)d(c(rF),b)
=1 bE7riB
We set Qp(Ilz) = i m(b)d (c (wf),b),
1=1 bE7rfg

M
note that ZQ(m) =

=1
arrive at the following formula

Q(II) is a constant, and

Q (IL4) = Q(II) + Qg (Ilp) . (4.5)

If Hg) is a sequence of partitions generated from

Il by iterations of the batch k—means, then
QB (HE;’)) > Qs (Hg+1)) ;
and, due to (4.5),
t t+1
Q(my) = @ (mi™).

Hence application of batch k—means to the
smaller set B generates a sequence of better and

better quality partitions of the larger set A.

A sequence of batch k—means iterations aug-
mented by an incremental iteration leads to better
quality partitions sometimes without additional
computational effort (see [19] for details). An in-
cremental iteration removes a vector b from a clus-
ter 72 and assigns the vector to a cluster 7r . We
denote 7ri without b by 7rz- , 7rj with the addi-
tional vector by 7T§3+ The centroids of the four

clusters are denoted by c;, ¢; , ¢;j, and c respec-

7

tively. Using (3.5) we obtain

@5 (f) - @5 ()]

+
[@s () ~ @
[M; — m(b)] [1(c;) - p(ei)] —m

[M; +m(b)] [$(c) — p(e;)] +m(b)y(c;). (4.6)

The k—means clustering algorithm we apply to an
initial partition of B is identical to the one pro-
vided in [19] and is briefly described below.

Algorithm 4.1 k—means for BIRCH generated

partitions.

1. run iterations of batch k—means as long as

new partitions are generated.

2. apply one iteration of incremental k—means.
if (new partition is generated)

go to step 1.
3. stop.

In Section 5 we report numerical experiment for

clustering with the distance like function given

by (3.4).

of (4.6) for two special choices 1(x)
n

and ¢(x) = 3 x[j]logx[j] — x[j].

i=1
nience of presentation for a cluster 7

We now display the right hand side

I/,

For conve-

we denote

>

m(b) by M;. For a vector x € R"} we denote

bEw?
n n
Zx[j] log x[5] by xx, and Zx[j] by xTe.
Jj=1 =1
kernel (x) | right-hand side of (4.6)
M; - m(b)
x||?) e, — b2 —
x|]}\/_,/I (()) llei — blf?
-m(b 2
M +m (b) HCJ b”
[M; — m(b)] (ci) c; — Mc;c;
xlx —xTe +
\ ot L
[Mj + m(b)] (Cj) C] — Mjc]- Cj

5. Numerical experiments

Results of preliminary numerical experiments with
two datasets are reported in this section. In all
the experiments n “best” terms are selected (see
[19] for the selection procedure) to create the vec-
tor space model (see [2]), and the tfn is applied
The three

step clustering procedure is applied to each docu-

to normalize the vectors (see [8]).

ment collection with three values (2,0), (0,1), and

(20,1) for the non—negative parameters (v,).

First we work with the three collec-
tions Medlars, CISI and Cranfield (clas-
sic3, total of 3891 documents available from

http://wuw.cs.utk.edu/"1si/). For the ex-

periments with these three collection we select

= 600, L = 5, and R = 5 x 107* x Q(A)

(note that @ (A) depends on the choice of the

parameters (v,u)). The sparsity of the original

dataset A is #noTl—zero entries ~ 4%, the
dim X #vectors

corresponding sparsity for the constructed dataset

B along with the average cluster size and the
Next
PDDP generates 3 cluster initial partition of the

number of clusters are given in Table 2.

(v, p) (2,0) | (0,1) | (20,1)
sparsity 12% | 16% 14%
av clus size | 3.11 | 4.41 3.73
of clus 1249 881 1043
Table 2: sparsity, average cluster size and num-

ber of clusters generated by BIRCH with (v, u)
distance for 3981 vectors of dimension 600

three datasets B generated by BIRCH. Batch
k—means, and k—means are applied to the three
initial partitions. Quality of final partitions of
the original dataset A along with number of
iterations performed by the k—means algorithms
while clustering the datasets B are reported in

Table 3.

) 20 [0.1 [@01
PDDP 3612 44994 81087
batch 3610 44893 81016
k—means | it =2 it=1 it =2
3607 44699 80711
k—means | it =17 | it =11 | it = 14

Table 3: (v,) quality of the dataset A (dimension
600, number of vectors 3981) partitions generated
by PDDP, batch k—means, and k—means applied
to the “squashed” dataset B produced by BIRCH
(it indicates the number of iterations when ap-
propriate)

Next consider the 20 newsgroups dataset of
19997 messages from 20 Usenet newsgroups. For
the experiments with this collection we select n =
1000, L = 10,and R = 5x 1073 x Q (A). The spar-
sity of the original dataset A is about 5%, the cor-
responding sparsity for the constructed dataset B
along with average cluster size and number of clus-
ters are given in Table 4. We use PDDP to gen-

erate the initial 20 cluster partitions for the three

(v, 1) (2,0) | (0,1) | (20,1)
sparsity 25% | 25% 25%
av clus size | 9.99 | 9.99 9.99
of clus 2000 | 2000 2000

Table 4: sparsity, average cluster size and num-
ber of clusters generated by BIRCH with (v, u)
distance for 19997 vectors of dimension 1000

datasets B generated by BIRCH. Batch k—means,
and k—means to are applied to these partitions

and the clustering results are shown in Table 5.

(v, 1) (2,0) (0,1) (20,1)
PDDP 18065 268376 449026
batch 17982 267200 | 447829
k—means | it=3 | it =2 it=4
17947 | 265301 444780
k—means | it =61 | it =89 | it =116

Table 5: (v, 1) quality of the dataset A (dimension
1000, number of vectors 19997) partitions gener-
ated by PDDP, batch k—means, and k—means
applied to the “squashed” dataset B produced
by BIRCH (it indicates the number of iterations
when appropriate)

Table 6 presents results obtain by direct appli-
cation of batch k—means, and k—means to initial
partition generated by PDDP for classic3 collec-
tion.

Finally results pertaining to partitions gener-
ated by PDDP, batch k—means, and k—means
from the 20 newsgroups dataset are reported in
Table 7.

6. Conclusion

This paper extends the earlier work [22], [4] and
suggests BIRCH and k—means clustering algo-

(v,) (2,0) (0,1) (20,1)
batch 3608 43759 80265
k—means | it =3 it =4 it=0
3605 43464 79520
k—means | it = 87 | it = 100 | it = 246

Table 6: (v,) quality of the dataset A (dimension
600, number of vectors 3981) partitions generated
by PDDP, batch k—means, and k—means (it in-
dicates the number of iterations)

governing cluster building process by BIRCH. As
a result we get 2000 clusters of size 10 (see Ta-
ble 4). With L = 10 and R = 5 x 107° x Q (A)
“quadratic” BIRCH generates 9469 clusters, the
dataset B sparsity is about 8%, and the aver-
age cluster size is 2.11 (with max cluster size 8,
and min cluster size 2). Result of clustering this

dataset are reported in Table 8.

(v, 1) (2,0) (0,1) (20,1)
batch 17956 256472 443427
k—means it =47 it =18 it=1
17808 250356 429921
k—means | it = 5862 | it = 7737 | it = 9988

(v, p) (2,0)
PDDP 18195
batch 18056
k—means it =16
17924
k—means | it = 1250

Table 7: (v, u) quality of the dataset A (dimension
1000, number of vectors 19997) partitions gener-
ated by PDDP, batch k—means, and k—means (it
indicates the number of iterations)

rithms with Bregman divergences. Numerical ex-
periment with three specific distance like functions
(the squared Euclidean distance, the Kullback—
Leibler divergence, and a positive linear combi-
nation of both) are provided. The experiments
show a trade off between the running time (num-
ber of iterations) and quality of the obtained par-
titions. A good choice of the constants L and
R for the BIRCH part of the procedure is im-
portant for good data “squashing.” For example
in the quadratic case the choice of L = 10 and
R =5x1073x Q (A) selected for the experiments
with 20 newsgroups dataset allows BIRCH to gen-
erate clusters with up to 10 vector with sample
variance 100 times as much as the sample vari-
ance of the entire dataset, i.e. in this case for all

practical matters cluster size is the only criterion

Table 8: (v,u) quality of the dataset A (dimen-
sion 1000, number of vectors 19997) partition gen-
erated by PDDP, quadratic batch k—means, and
quadratic k—means through a BIRCH generated
partition with 9469 clusters (it indicates the num-
ber of iterations)

While PDDP does an excellent job as an “ini-
tial partition generator” it is of interest to devise
“initial partition generators” that reflect the na-
ture of a distance like function used by BIRCH
and k—means.

It is of interest to investigate efficiency of
BIRCH combined with k—means smoothing tech-
niques recently proposed in [20]. Usefulness of this
approach will be tested on large datasets like, for

example, the Enron dataset.

References

[1] A. Banerjee, S. Merugu, I. S. Dhillon, and
J. Ghosh. Clustering with Bregman diver-

[2]

[4]

[9]

gences. Journal of Machine Learning Re-

search, 6:1705-1749, 2005.

M. Berry and M. Browne. Understanding

Search Engines. STAM, 1999.

D. L. Boley. Principal direction divisive par-
titioning. Data Mining and Knowledge Dis-
covery, 2(4):325-344, 1998.

Paul S. Bradley, Usama M. Fayyad, and Cory
Reina. Scaling clustering algorithms to large
databases. In Knowledge Discovery and Data
Mining, pages 9-15, 1998.

L.M. Bregman. A relaxation method of find-
ing a common point of convex sets and its
application to the solution of problems in con-
vex programming. USSR Comp. Math. and
Math Phys., 7:200-217, 1967.

Y. Censor and A. Lent.

action method for interval convex program-

An interval row

ming. J. of Optimization Theory and Appli-
cations, 34:321-353, 1981.

Y. Censor and S.A. Zenios. Parallel Opti-
mization. Oxford University Press, Oxford,
1997.

E. Chisholm and T. Kolda.

weighting formulas for the vector space

New term

method in information retrieval, 1999. Re-
port ORNL/TM-13756, Computer Science
and Mathematics Division, Oak Ridge Na-

tional Laboratory.

M. Collins, R.E. Schapire, and Y. Singer.
Logistic regression, AdaBoost and Bregman

distances. In Proceedings of the Thirteenth

[10]

[11]

[12]

[13]

[14]

[15]

Annual Conference on Computational Learn-
ing Theory, pages 158 — 169, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publish-

ers Inc.

M. Collins, R.E. Schapire, and Y. Singer. Lo-
gistic regression, AdaBoost and Bregman dis-
tances. Machine Learning, 48:253-285, 2002.

I. Csiszar. Information-type measures of dif-
ference of probability distributions and indi-
rect observations. Studia Sci. Mat. Hungar.,
2:299-318, 1967.

J. Kogan, M. Teboulle, and C. Nicholas. The
entropic geometric means algorithm: an ap-
proach for building small clusters for large
text datasets. In D. Boley et al, editor, Pro-
ceedings of the Workshop on Clustering Large
Data Sets (held in conjunction with the Third
IEEE International Conference on Data Min-
ing), pages 63-71, 2003.

J. Kogan, M. Teboulle, and C. Nicholas. Data
driven similarity measures for k—means like
clustering algorithms. Information Retrieval,
8:331-349, 2005.

J. Lafferty. Adaptive models, boosting and
inference for generalized divergences. In Pro-
ceedings of 12th Annual Conference on Com-
putational Learning Theory, pages 125-133,
1999.

J. Lafferty, S.D. Pietra, and Pietra V.D. Sta-
tistical learning algorithms based on Breg-
man distances. In Proceedings of the Cana-

dian Workshop on Information Theory, 1997.

[16]

[17]

[20]

[21]

M. Teboulle.
with application to nonlinear programming.
Mathematics of Operation Research, 17:670-
690, 1992.

Entropic proximal mappings

M. Teboulle. On ¢-divergence and its appli-
In F.Y. Phillips and J. Rousseau,

editors, Systems and Management Science by

cations.

Ezxtremal Methods—Research Honoring Abra-
ham Charnes at Age 70, pages 255-273,
Kluwer Academic Publishers. Nowell, MA,
1992.

M. Teboulle. Convergence of proximal-like al-
gorithms. SIAM J. of Optimization, 7:1069—
1083, 1997.

M. Teboulle, P. Berkhin, I. Dhillon, Y. Guan,
and J. Kogan. Clustering with entropy-
like k—means algorithms. In J. Kogan,
C. Nicholas, and M. Teboulle, editors, Group-
ing Multidimensional Data: Recent Advances
in Clustering, pages 127-160. Springer—

Verlag, 2006.

M. Teboulle and J. Kogan. Deterministic an-
nealing and a k-means type smoothing op-
timization algorithm for data clustering. In
I. Dhillon, J. Ghosh, and J. Kogan, editors,
Proceedings of the Workshop on Clustering
High Dimensional Data and its Applications
(held in conjunction with the Fifth SIAM
International Conference on Data Mining),
pages 13-22, Philadelphia, PA, 2005. STAM.

S. Wang and D. Schuurmans. Learning con-
tinuous latent variable models with Bregman
divergences. In Lecture Notes in Artificial In-
telligence, volume 2842, pages 190-204, 2003.

[22] T. Zhang, R. Ramakrishnan, and M. Livny.

BIRCH: A new data clustering algorithm and
its applications. Journal of Data Mining and
Knowledge Discovery, 1(2):141-182, 1997.

